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Plan

• Higher information in gauge theories

• Using it!  BRST-BV

• Function algebras and homotopy algebraic QFT

• Homotopy AQFTs from AQFT-invariants

Bottomline: Elementary gauge theoretic constructions suggest a
homotopical enhancement of the AQFT axioms.

Disclaimer!
The following informal presentation focuses on examples/ideas.
For actual statements see arXiv:1709.08657 & 1805.08795
and for a review refer to arXiv:1903.02878.
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Higher structures in gauge theories

Ordinary fields

φ

φ′

φ′′

Information captured by φ’s

Gauge fields

A

A′

A′′

g

g
′

g ′′

Two layers of information:
(1) Gauge classes [A]
(2) For each A, the g ’s preserving it

Higher information! (groupoid)

Why bother about (2)?

• Compare Yang-Mills with structure groups R and U(1):
On Minkowski (1) is the same for both, but (2) is R vs U(1)!

• (2) plays a crucial role in the BRST-BV formalism. . .
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Going on-shell

input action functional S : C → R on configuration space

step 1 take the differential dS : C → T ∗C of the action

step 2 intersect dS with the 0-section of T ∗C
output on-shell configuration space Sol (a.k.a. critical locus)

Sol := dS ∩ 0 //

��

C
dS
��

C
0

// T ∗C

• Mechanical systems and ordinary fields 3

• Analogue in gauge theory requires appropriate framework. . .
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Going on-shell in gauge theory: Set-up

Consider the “action” S =
∫
M dA ∧ ∗dA for the vector potential A on

a spacetime M. Linearity =⇒ configurations as a chain complex:

C :=
( 0

Ω1(M)
A

1

Ω0(M)
g

doo
)

As cotangent bundle take

T ∗C :=
( −1

Ω0(M)
γ

0

Ω1(M)
A

× Ω1(M)
α

−δπ2oo

1

Ω0(M)
g

(d,0)
oo

)

0-section 0 : C → T ∗C defined by

0 : A 7−→ (A, 0), g 7−→ g

and differential dS : C → T ∗C of the action given by

dS : A 7−→ (A, δdA), g 7−→ g
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Going on-shell in gauge theory: naive intersection

We are trying to imitate the standard process for going on-shell, so
the first attempt is to take the intersection of dS with 0:

dS ∩ 0 =
( 0

Ω1
δd(M)
A

1

Ω0(M)
g

doo
)

Already not so bad, however not quite BRST-BV complex! But why?

BRST-BV: Freedom of adding (homologically trivial) fields without
affecting the final result (in homology)  quasi-isomorphisms

Price to pay:
Constructions, such as going on-shell, must preserve quasi-isos!

How to achieve this?
General recipe from homological algebra  derived functors
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Going on-shell in gauge theory: derived intersection

The derived intersection is obtained by “improving” the 0-section:

C 0 //

∼
��

T ∗C

C̃
0̃

>> >>
dS ∩̃ 0 //

��

C
dS

��

C̃
0̃

// // T ∗C
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Going on-shell in gauge theory: derived intersection

The derived intersection is obtained by “improving” the 0-section:
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Going on-shell in gauge theory: derived intersection

The derived intersection is obtained by “improving” the 0-section:

C 0 //

∼
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T ∗C
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>> >>
dS ∩̃ 0 //
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// // T ∗C
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δoo
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BRST-BV complex = go on-shell, but derived!

Hence: linear gauge theory (A, g , . . .)  chain complex
 quasi-isomophisms  derived intersection  BRST-BV



Classical observables

Classical observables := C-valued functions on configuration space:

C 7−→ Map(C,C)

Commutative algebra! (quantization  non-commutative)

Tipical situation in field theory:

C : M 7→ CM contravariant assignment
of configuration spaces to spacetimes

⇓

Map(C,C) : M 7→ Map(CM ,C)
prototype of algebraic (classical) field theory

Let us try to imitate this construction with a gauge theory. . .
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Configuration space of a gauge theory

The data of a gauge theory are efficiently captured by simplicial sets:

C0
gauge fields

// C1
gauge trafos

oo

oo //

//
C2

higher trafosoo

oo

oo //

//

//

· · ·
oo

oo

oo

oo

Prototypical example: G -bundles with connection on M ∼= Rm

Ω1(M, g)
A

// Ω1(M, g)
A

× C∞(M,G )
g0

oo

oo //

//
Ω1(M, g)

A

× C∞(M,G )×2

(g0,g1)oo

oo

oo //

//

//

· · ·
oo

oo

oo

oo

Remarks:

• G Abelian =⇒ chain complex (as previously)

• Contravariant in M =⇒ covariant passing to function algebras

We need function algebras on simplicial sets. . .
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Classical observables for gauge theories

Homotopy theory provides function algebras on simplicial sets:

1. Take C-valued functions on each level of the simplicial set C:

Map(C0,C)
//

//
Map(C1,C)oo

//

//

//

Map(C2,C)
oo

oo

//

//

//

//

· · ·
oo

oo

oo

2. Form associated complex N∗(C) of normalized cochains on C:

Map(C0,C) // MapN(C1,C) // MapN(C2,C) // · · ·

(normalizazion ↔ left-pointing arrows & differential ↔ right-pointing arrows)
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Remarks on normalized cochains N∗(C)

• This cochain complex computes singular cohomology of a space

• Equivalent simplicial sets
3

=⇒ equivalent complexes (derived!)

• Smooth refinement? 3 (but has to be derived!)

• Differential graded algebra? 3 (cup product of singular cochains)

• (Graded)-commutativity? 7 (however, commutative in cohomology. . . )

• Cochains form an E∞-algebra! homotopy-coherently commutative

Hence: For a gauge theory C, the assignment M 7→ N∗(CM) is a
covariant (not quite quantum) field theory with multiplications being
commutative up to coherent homotopies

 First instance of homotopy A(Q)FT
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Algebraic quantum field theory (AQFT)

Broad spectrum of concepts with similar behavior:

• On Minkowski spacetime [Haag-Kastler, . . . ]

• On curved backgrounds [Brunetti-Fredenhagen-Verch, Hollands-Wald, . . . ]

• Chiral conformal field theories, Euclidean field theories, . . .

Common pattern: QFT as a functor

A︸︷︷︸
functor

: Loc︸︷︷︸
spacetimes

−→ Alg︸︷︷︸
algebras

subject to additional axioms, such as causality, time-slice, . . .
reflecting physically motivated features.
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reflecting physically motivated features.



Time-slice axiom

{Cauchy morphisms} ⊆ Loc

Pictures

M1 M2

M

⇥
A(M1), A(M2)

⇤
= {0}

⌃

M

M 0

A(M)
'�! A(M 0)

A. Schenkel Homotopical algebra and quantum gauge theories DFG Emmy Noether Interview 4 / 5

A(f ) : A(M) −→ A(M ′)
is an isomorphism

Dynamical law:
Theory on a spacetime determined by algebra of observables on a
neighborhood of a Cauchy surface.



Causality

For causally disjoint spacetimes

Pictures

M1 M2

M

⇥
A(M1), A(M2)

⇤
= {0}

⌃

M

M 0

A(M)
'�! A(M 0)
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[A(f1)−,A(f2)−] = 0

Nothing travels faster than light:
Spacelike separated observables act independently of each other since
the algebras associated to causally disjoint regions commute in the
ambient.



Invariants of AQFTs: Idea

Starting point:
AQFT A : Str→ Alg on spacetimes with additional background data

Str
A //

forget

��

Alg

⇑

Loc

Examples:

• Dirac fields – spin structures

• Fields coupled to background gauge fields – bundles + connection

• Global gauge symmetries

• External sources



Invariants of AQFTs: Idea

Starting point:
AQFT A : Str→ Alg on spacetimes with additional background data

Str
A //

forget

��

Alg

⇑

Loc

Ainv

>>

Examples:

• Dirac fields – spin structures

• Fields coupled to background gauge fields – bundles + connection

• Global gauge symmetries

• External sources

Goal: Invariant QFT Ainv : Loc→ Alg independent of structures



Invariants of AQFTs: Construction and properties

Computing invariants on a spacetime M:
S ∈ π−1(M) structures on M
h : S → S ′ isomorphisms of such structures (symmetries)

Ainv(M) :=
{
a ∈

∏

S∈π−1(M)

A(S) : A(h)a(S) = a(S ′) ∀h : S → S ′
}

Interpretation: a ∈ Ainv(M) is a function assigning to each structure
S over M an observable a(S) ∈ A(S). The condition ensures that
S 7→ a(S) is invariant under symmetries of S ’s.

Is Ainv : Loc→ Alg an AQFT?

• Functoriality & Causality: 3 (almost automatic)

• Time-slice: 3 (mild assumptions on π : Str → Loc)

• Isotony: 7 (requires very restrictive hypotheses)
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Homotopy invariants of AQFTs: Motivation

Observation:

• Additional structures are often genuine gauge fields, e.g. bundles!

• The paradigm that led us to BRST-BV was to take gauge
transformations seriously, instead of passing to gauge classes.

• What if we adopt a similar perspective?  Homotopy invariants

Motivating example: R2 as trivial gauge symmetry of trivial QFT A
on 0-dim. “spacetime” {∗}: A({∗}) = R with trivial R2-action.
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Observation:

• Additional structures are often genuine gauge fields, e.g. bundles!

• The paradigm that led us to BRST-BV was to take gauge
transformations seriously, instead of passing to gauge classes.

• What if we adopt a similar perspective?  Homotopy invariants

Motivating example: R2 as trivial gauge symmetry of trivial QFT A
on 0-dim. “spacetime” {∗}: A({∗}) = R with trivial R2-action.

d1f (x0, x1) = f (x0)− f (x0 + x1) + f (x1)

d2ω(x0, x1, x2) = ω(x0, x1)− ω(x0 + x1, x2) + ω(x0, x1 + x2)− ω(x1, x2)

. . . = . . .



Homotopy invariants of AQFTs: Motivation

Observation:

• Additional structures are often genuine gauge fields, e.g. bundles!

• The paradigm that led us to BRST-BV was to take gauge
transformations seriously, instead of passing to gauge classes.

• What if we adopt a similar perspective?  Homotopy invariants

Motivating example: R2 as trivial gauge symmetry of trivial QFT A
on 0-dim. “spacetime” {∗}: A({∗}) = R with trivial R2-action.

Map({∗},R)
0 // MapN(R2,R)

x0 7→f (x0)

d1 // MapN((R2)2,R)
(x0,x1)7→ω(x0,x1)

d2 // · · ·

The non-trivial 2-cocycle ω ∈ ker d2, ω(x0, x1) := x1
0 x2

1 , defines the
Heisenberg group  Interesting info in higher cohomologies!



Homotopy invariants of AQFTs: Construction

If we “combine” the construction of invariants with the previous
example, for each spacetime M, we get a simplicial set

{S0 ∈ π−1(M)}
structures over M

// {S0
h0← S1 over idM}

symmetries
oo

oo //

//
{S0

h0← S1
h1← S2}

higher. . .oo

oo

oo //

//

//

· · ·
oo

oo

oo

oo



Homotopy invariants of AQFTs: Construction

If we “combine” the construction of invariants with the previous
example, for each spacetime M, we get a cochain complex

Ahinv(M) :=
( ∏

S0

A(S0)
d0 //

∏

S0
h0←S1

A(S0)
d1 //

∏

S0
h0←S1
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A(S0)
d2 // · · ·
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An n-cochain a looks like an A-valued map

a ∈
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h0←···

hn−1← Sn

A(S0) : (h0, . . . , hn) 7→ a(h0, . . . , hn) ∈ A(S0)
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( ∏
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d0 //
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S0
h0←S1

A(S0)
d1 //
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h0←S1

h1←S2

A(S0)
d2 // · · ·

)

An n-cochain a looks like an A-valued map

a ∈
∏

S0
h0←···

hn−1← Sn

A(S0) : (h0, . . . , hn) 7→ a(h0, . . . , hn) ∈ A(S0)

The differential of the n-cochain a is computed by

dna(h0, . . . , hn) = (−1)0a(h0, . . . , hn−1) +
n∑

i=1

(−1)ia(. . . , hn−ihn−i+1, . . .)

+ (−1)n+1A(h0)a(h1, . . . , hn)



Homotopy invariants of AQFTs: Properties

Sanity checks:

• H0(Ahinv(M)) = Ainv(M)

• Ahinv(M) is a dg-algebra (with multiplication inherited from A)

• (−)hinv is a derived functor (by construction)

Is the outcome an AQFT?

• Functoriality 7 but up to coherent homotopies 3

• Causality 7 but up to coherent homotopies 3

• Time-slice 7 but up to coherent homotopies 3

(reasonable assumptions on π : Str → Loc)

• Isotony 7 (unclear if one can/should make sense out of it)

 Another instance of homotopy AQFT
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Causality vs causality up to coherent homotopies

Given an AQFT A, two causally disjoint embeddings

M1
f1−→ M

f2←− M2

induce the commutator

[A(f1)−,A(f2)−] : A(M1)⊗A(M2) −→ A(M)

Causality = commutator vanishes one condition to check

Causality up to coherent homotopies =

(1) cochain homotopy between commutator and zero

(2) cochain homotopy between cochain homotopies

(. . . ) . . . infinite hierarchy of coherent data to construct!

We need more sophisticated techniques. . .



Causality vs causality up to coherent homotopies

Given an AQFT A, two causally disjoint embeddings

M1
f1−→ M

f2←− M2

induce the commutator

[A(f1)−,A(f2)−] : A(M1)⊗A(M2) −→ A(M)

Causality = commutator vanishes one condition to check

Causality up to coherent homotopies =

(1) cochain homotopy between commutator and zero

(2) cochain homotopy between cochain homotopies

(. . . ) . . . infinite hierarchy of coherent data to construct!

We need more sophisticated techniques. . .



Causality vs causality up to coherent homotopies

Given an AQFT A, two causally disjoint embeddings

M1
f1−→ M

f2←− M2

induce the commutator

[A(f1)−,A(f2)−] : A(M1)⊗A(M2) −→ A(M)

Causality = commutator vanishes one condition to check

Causality up to coherent homotopies =

(1) cochain homotopy between commutator and zero

(2) cochain homotopy between cochain homotopies

(. . . ) . . . infinite hierarchy of coherent data to construct!

We need more sophisticated techniques. . .



Causality vs causality up to coherent homotopies

Given an AQFT A, two causally disjoint embeddings

M1
f1−→ M

f2←− M2

induce the commutator

[A(f1)−,A(f2)−] : A(M1)⊗A(M2) −→ A(M)

Causality = commutator vanishes one condition to check

Causality up to coherent homotopies =

(1) cochain homotopy between commutator and zero

(2) cochain homotopy between cochain homotopies

(. . . ) . . . infinite hierarchy of coherent data to construct!

We need more sophisticated techniques. . .



Causality vs causality up to coherent homotopies

Given an AQFT A, two causally disjoint embeddings

M1
f1−→ M

f2←− M2

induce the commutator

[A(f1)−,A(f2)−] : A(M1)⊗A(M2) −→ A(M)

Causality = commutator vanishes one condition to check

Causality up to coherent homotopies =

(1) cochain homotopy between commutator and zero

(2) cochain homotopy between cochain homotopies

(. . . ) . . . infinite hierarchy of coherent data to construct!

We need more sophisticated techniques. . .



Causality vs causality up to coherent homotopies

Given an AQFT A, two causally disjoint embeddings

M1
f1−→ M

f2←− M2

induce the commutator

[A(f1)−,A(f2)−] : A(M1)⊗A(M2) −→ A(M)

Causality = commutator vanishes one condition to check

Causality up to coherent homotopies =

(1) cochain homotopy between commutator and zero

(2) cochain homotopy between cochain homotopies

(. . . ) . . . infinite hierarchy of coherent data to construct!

We need more sophisticated techniques. . .



Formalizing homotopy AQFTs

New structure emerging from examples

homotopy AQFT
informal

:= AQFT up to coherent homotopies

Remarks:

• Weaker at first sight, however usual strength in cohomology

• Actually stronger and more constructive! (data instead of properties)

• No free lunch: Formalizing and constructing homotopy AQFTs
requires powerful techniques, e.g. homotopy theory and operads. . .

Basic idea:

(1) Construct book-keeping device (operad) that captures

(a) elementary AQFT operations (push-forward & multiplication)
(b) structural identities (functoriality, associativity, causality, . . . )

(2) Replace identities with coherent homotopies (homotopy theory). . .
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Summary & outlook

Hints pointing towards homotopy theory:

• Gauge theories carry higher structures (e.g. encoded in chain complexes)

• BRST-BV complex = go on shell via derived intersection

Gauge theory leads to a new type of QFTs:

• Classical observables on gauge theories via homotopical methods
 commutative algebras up to coherent homotopies

• Homotopy invariants of AQFTs
 AQFT axioms up to coherent homotopies

Emergent generalization: AQFT  homotopy AQFT

Informally, replace identities with homotopies in a coherent way.

Standard AQFT recovered in cohomology, but more flexibility at cochain level.

Next: more examples, relate to factorization algs, full BRST-BV. . .
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