Marco Benini


Since 2019 I am a researcher in Mathematical Physics at the Department of Mathematics of the University of Genoa.

Between 2017 and 2019 I have been a research assistant in the Algebra and Number Theory group of the Department of Mathematics at the University of Hamburg, with a research grant funded by DFG.

Before that, between 2015 and 2017, I was a postdoctoral fellow in the Geomtery group of the Institute of Mathematics at the University of Potsdam, funded by an Alexander-von-Humboldt postdoctoral research fellowship.

I attained my PhD in Mathematical Physics in 2015 at the Department of Physics of the University of Pavia, under the supervision of Prof. Claudio Dappiaggi.

Click here to download my CV and list of publications (last update: 17 Jan 2021). You can find my publications below and on arXiv and IRIS. Further information is available in my ORCID and INSPIRE profiles.

Research interests

My research interests revolve around geometric and categorical structures related to quantum field theory (gauge theories in particular) over globally hyperbolic Lorentzian manifolds.

Teaching at the University of Genoa

2020-21 – Second semester: Mathematical methods in quantum mechanics
2020-21 – Second semester: Analytical mechanics
2019-20 – Second semester: Analytical mechanics
2019-20 – First and second semester: Mathematical analysis 2

Doctoral students

2020-23: Giorgio Musante
2019-2022: Angelos Anastopoulos

List of publications (click here to download as a PDF)
  1. M. Benini, M. Perin, A. Schenkel, Smooth 1-dimensional algebraic quantum field theories, Oct 2020, preprint, arXiv:2010.13808 [math-ph].
  2. M. Benini, A. Schenkel, B. Vicedo, Homotopical analysis of 4d Chern-Simons theory and integrable field theories, Aug 2020, preprint, arXiv:2008.018297 [hep-th].
  3. M. Benini, M. Perin, A. Schenkel, L. Woike, Categorification of algebraic quantum field theories, Mar 2020, preprint, arXiv:2003.13713 [math-ph].
Articles on peer-reviewed journals
  1. M. Benini, A. Schenkel, L. Woike, Operads for algebraic quantum field theory, Commun. Contemp. Math. 23:2 (2021) 2050007, DOI: 10.1142/S0219199720500078, arXiv:1709.08657 [math-ph].
  2. M. Benini, S. Bruinsma, A. Schenkel, Linear Yang-Mills theory as a homotopy AQFT, Commun. Math. Phys. 378:1 (2020) 185, DOI: 10.1007/s00220-019-03640-z, arXiv:1906.00999 [math-ph].
  3. M. Benini, M. Perin, A. Schenkel, Model-independent comparison between factorization algebras and algebraic quantum field theory on Lorentzian manifolds, Commun. Math. Phys. 377:2 (2020) 971, DOI: 10.1007/s00220-019-03561-x, arXiv:1903.03396 [math-ph].
  4. M. Benini, A. Schenkel, L. Woike, Involutive categories, colored ∗ -operads and quantum field theory, Theory Appl. Categ. 34:2 (2019) 13, arXiv:1802.09555 [math.CT].
  5. M. Benini, A. Schenkel, L. Woike, Homotopy theory of algebraic quantum field theories, Lett. Math. Phys. 109:7 (2019) 1487, DOI: 10.1007/s11005-018-01151-x, arXiv:1805.08795 [math-ph].
  6. C. Becker, M. Benini, A. Schenkel, R. J. Szabo, Cheeger-Simons differential characters with compact support and Pontryagin duality, Commun. Anal. Geom. 27:7 (2019) 1473, DOI: 10.4310/CAG.2019.v27.n7.a2, arXiv:1511.00324 [math-ph].
  7. M. Benini, C. Dappiaggi, A. Schenkel, Algebraic quantum field theory on spacetimes with timelike boundary, Ann. Henri Poincaré 19:8 (2018) 2401, DOI: 10.1007/s00023-018-0687-1, arXiv:1712.06686 [math-ph].
  8. M. Benini, A. Schenkel, U. Schreiber, The stack of Yang-Mills fields on Lorentzian manifolds, Commun. Math. Phys. 359:2 (2018) 765, DOI: 10.1007/s00220-018-3120-1, arXiv:1704.01378 [math-ph].
  9. M. Benini, A. Schenkel, Quantum field theories on categories fibered in groupoids, Commun. Math. Phys. 356:1 (2017) 19, DOI: 10.1007/s00220-017-2986-7, arXiv:1610.06071 [math-ph].
  10. M. Benini, M. Capoferri, C. Dappiaggi, Hadamard states for quantum Abelian duality, Ann. Henri Poincaré 18:10 (2017) 3325, DOI: 10.1007/s00023-017-0593-y, arXiv:1611.10282 [math-ph].
  11. M. Benini, A. Schenkel, Poisson algebras for non-linear field theories in the Cahiers topos, Ann. Henri Poincaré 18:4 (2017) 1435, DOI: 10.1007/s00023-016-0533-2, arXiv:1602.00708 [math-ph].
  12. C. Becker, M. Benini, A. Schenkel, R. J. Szabo, Abelian duality on globally hyperbolic spacetimes, Commun. Math. Phys. 349:1 (2017) 361, DOI: 10.1007/s00220-016-2669-9, arXiv:1511.00316 [math-ph].
  13. M. Benini, A. Schenkel, R. J. Szabo, Homotopy colimits and global observables in Abelian gauge theory, Lett. Math. Phys. 105:9 (2015) 1193, DOI: 10.1007/s11005-015-0765-y, arXiv:1503.08839 [math-ph].
  14. M. Benini, Optimal space of linear classical observables for Maxwell k-forms via spacelike and timelike compact de Rham cohomologies, J. Math. Phys. 57:5 (2016) 053502, DOI: 10.1063/1.4947563, arXiv:1401.7563 [math-ph].
  15. M. Benini, Relative Cauchy evolution for the vector potential on globally hyperbolic spacetimes, Mathematics and Mechanics of Complex Systems 3:2 (2015) 177, DOI: 10.2140/memocs.2015.3.177.
  16. M. Benini, C. Dappiaggi, S. Murro, Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states, J. Math. Phys. 55:8 (2014) 082301, DOI: 10.1063/1.4890581, arXiv: 1404.4551 [gr-qc].
  17. M. Benini, C. Dappiaggi, T.-P. Hack, A. Schenkel, A C*-algebra for quantized principal U( 1 )-connections on globally hyperbolic Lorentzian manifolds, Commun. Math. Phys. 332:1 (2014) 477, DOI: 10.1007/s00220-014-2100-3, arXiv:1307.3052 [math-ph].
  18. M. Benini, C. Dappiaggi, A. Schenkel, Quantized Abelian principal connections on Lorentzian manifolds, Commun. Math. Phys. 330:1 (2014) 123, DOI: 10.1007/s00220-014-1917-0, arXiv:1303.2515 [math-ph].
  19. M. Benini, C. Dappiaggi, T.-P. Hack, Quantum field theory on curved backgrounds – A primer, Int. J. Mod. Phys. A 17:28 (2013) 1330023, DOI: 10.1142/S0217751X13300238, arXiv:1306.0527 [gr-qc].
  20. M. Benini, C. Dappiaggi, A. Schenkel, Quantum field theory on affine bundles, Ann. Henri Poincaré 15:1 (2014) 171, DOI: 10.1007/s00023-013-0234-z, arXiv:1210.3457 [math-ph].
Book contributions
  1. M. Benini, C. Dappiaggi, Models of free quantum field theories on curved backgrounds, in Advances in Algebraic Quantum Field Theory, eds. R. Brunetti, C. Dappiaggi, K. Fredenhagen, J. Yngvason, Springer (2015), DOI: 10.1007/978-3-319-21353-8_3, arXiv:1505.04298 [math-ph].
Conference proceedings
  1. M. Benini, A. Schenkel, Higher structures in algebraic quantum field theory, Proceedings of the LMS-EPSRC Durham symposium “Higher structures in M-theory”, 12-18 Aug 2018, Fortschritte der Physik 67:8-9 (2019) 1910015, DOI: 10.1002/prop.201910015, arXiv:1903.02878 [math-ph].
  2. M. Benini, K. Rejzner, A. Schenkel, C. Schweigert, Book of abstracts for the mini-workshop “New interactions between homotopical algebra and quantum field theory”, 18-23 Dec 2016, Oberwolfach Rep. 13:4 (2016) 3261, DOI: 10.4171/OWR/2016/58.

Slides of some talks
18 Apr 2019: Higher structures in quantum gauge theories, “Algebraic and Geometric Aspects in Quantum Field Theory”, Mathematical Institute, University of Freiburg (DE) – Link to PDF.

Last updated: 17 Jan 2021